12 research outputs found

    Microwave and submillimeter wave scattering of oriented ice particles

    Get PDF
    Microwave (1-300GHz) dual-polarization measurements above 100GHz are so far sparse, but they consistently show polarized scattering signals of ice clouds. Existing scattering databases of realistically shaped ice crystals for microwaves and submillimeter waves (> 300GHz) typically assume total random orientation, which cannot explain the polarized signals. Conceptual models show that the polarization signals are caused by oriented ice particles. Only a few works that consider oriented ice crystals exist, but they are limited to microwaves only. Assuming azimuthally randomly oriented ice particles with a fixed but arbitrary tilt angle, we produced scattering data for two particle habits (51 hexagonal plates and 18 plate aggregates), 35 frequencies between 1 and 864GHz, and 3 temperatures (190, 230 and 270K). In general, the scattering data of azimuthally randomly oriented particles depend on the incidence angle and two scattering angles, in contrast to total random orientation, which depends on a single angle. The additional tilt angle further increases the complexity. The simulations are based on the discrete dipole approximation in combination with a self-developed orientation averaging approach. The scattering data are publicly available from Zenodo (https://doi.org/10.5281/zenodo.3463003). This effort is also an essential part of preparing for the upcoming Ice Cloud Imager (ICI) that will perform polarized observations at 243 and 664GHz. Using our scattering data radiative transfer simulations with two liquid hydrometeor species and four frozen hydrometeor species of polarized Global Precipitation Measurement (GPM) Microwave Imager (GMI) observations at 166GHz were conducted. The simulations recreate the observed polarization patterns. For slightly fluttering snow and ice particles, the simulations show polarization differences up to 11K using plate aggregates for snow, hexagonal plates for cloud ice and totally randomly oriented particles for the remaining species. Simulations using strongly fluttering hexagonal plates for snow and ice show similar polarization signals. Orientation, shape and the hydrometeor composition affect the polarization. Ignoring orientation can cause a negative bias for vertically polarized observations and a positive bias for horizontally polarized observations

    All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz

    Get PDF
    We perform an all-sky information content analysis for channels in the millimetre and sub-millimetre wavelength with 24 channels in the region from 23.8 to 874.4 GHz. The employed set of channels corresponds to the instruments ISMAR and MARSS, which are available on the British FAAM research aircraft, and it is complemented by two precipitation channels at low frequencies from Deimos. The channels also cover ICI, which will be part of the MetOp-SG mission. We use simulated atmospheres from the ICON model as basis for the study and quantify the information content with the reduction of degrees of freedom (Delta DOF). The required Jacobians are calculated with the radiative transfer model ARTS. Specifically we focus on the dependence of the information content on the atmospheric composition. In general we find a high information content for the frozen hydrometeors, which mainly comes from the higher frequency channels beyond 183.31 GHz (on average 3.10 for cloud ice and 2.57 for snow). Considerable information about the microphysical properties, especially for cloud ice, can be gained. The information content about the liquid hydrometeors comes from the lower frequency channels. It is 1.69 for liquid cloud water and 1.08 for rain using the full set of channels. The Jacobians for a specific cloud hydrometeor strongly depend on the atmospheric composition. Especially for the liquid hydrometeors the Jacobians even change sign in some cases. However, the information content is robust across different atmospheric compositions. For liquid hydrometeors the information content decreases in the presence of any frozen hydrometeor, for the frozen hydrometeors it decreases slightly in the presence of the respective other frozen hydrometeor. Due to the lack of channels below 183 GHz liquid hydrometeors are hardly seen by ICI. However, the overall results with regard to the frozen hydrometeors also hold for the ICI sensor. This points to ICI\u27s great ability to observe ice clouds from space on a global scale with a good spatial coverage in unprecedented detail

    Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems

    Get PDF
    Accurate measurements of ice hydrometeors are required to improve the representation of clouds and precipitation in weather and climate models. In this study, a newly developed, synergistic retrieval algorithm that combines radar with passive millimeter and sub-millimeter observations is applied to observations of three frontally generated, mid-latitude cloud systems in order to validate the retrieval and assess its capabilities to constrain the properties of ice hydrometeors. To account for uncertainty in the assumed shapes of ice particles, the retrieval is run multiple times while the shape is varied. Good agreement with in situ measurements of ice water content and particle concentrations for particle maximum diameters larger than 200 micron is found for one of the flights for the large plate aggregate and the six-bullet rosette shapes. The variational retrieval fits the observations well, although small systematic deviations are observed for some of the sub-millimeter channels pointing towards issues with the sensor calibration or the modeling of gas absorption. For one of the flights the quality of the fit to the observations exhibits a weak dependency on the assumed ice particle shape, indicating that the employed combination of observations may provide limited information on the shape of ice particles in the observed clouds. Compared to a radar-only retrieval, the results show an improved sensitivity of the synergistic retrieval to the microphysical properties of ice hydrometeors at the base of the cloud. Our findings indicate that the synergy between active and passive microwave observations may improve remote-sensing measurements of ice hydrometeors and thus help to reduce uncertainties that affect currently available data products. Due to the increased sensitivity to their microphysical properties, the retrieval may also be a valuable tool to study ice hydrometeors in field campaigns. The good fits obtained to the observations increase confidence in the modeling of clouds in the Atmospheric Radiative Transfer Simulator and the corresponding single scattering database, which were used to implement the retrieval forward model. Our results demonstrate the suitability of these tools to produce realistic simulations for upcoming sub-millimeter sensors such as the Ice Cloud Image or the Arctic Weather Satellite

    Radiative Flux and Forcing Parameterization Error in Aerosol-Free Clear Skies

    Get PDF
    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. A dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations

    Is There Really a Closure Gap Between 183.31-GHz Satellite Passive Microwave and In Situ Radiosonde Water Vapor Measurements?

    No full text
    International audienceWe present a new closure study between radiosonde and microwave satellite humidity measurements. The radiosonde data are from the Global Climate Observing System Reference Upper-Air Network. The satellite data are from the radiometers: MHS, Advanced Technology Microwave Sounder, and Sondeur Atmosphérique du Profil d'Humidité Intertropicale par Radiométrie. Like previous studies, we find the satellite data to be “colder” than simulated radiosonde data. But the mean bias value (0.4 K) is smaller than previously reported and, according to our analysis, not significant. The error budget suggests an uncertainty of 0.52-1.06 K. We also show that the improvement in closure can be attributed to improvements in the intercomparison methodology

    Characterization of the High-Resolution Infrared Radiation Sounder Using Lunar Observations

    No full text
    The High-Resolution Infrared Radiation Sounder (HIRS) has been operational since 1975 on different satellites. In spite of this long utilization period, the available information about some of its basic properties is incomplete or contradictory. We have approached this problem by analyzing intrusions of the Moon in the deep space view of HIRS/2 through HIRS/4. With this method we found: (1) The diameters of the field of view of HIRS/2, HIRS/3, and HIRS/4 have the relative proportions of 1.4 ° to 1.3 ° to 0.7 ° with all channels; (2) the co-registration differs by up to 0.031 ° among the long-wave and by up to 0.015 ° among the shortwave spectral channels in the along-track direction; (3) the photometric calibration is consistent within 0.7% or less for channels 2–7 (1.2% for HIRS/2), similar values were found for channels 13–16; (4) the non-linearity of the short-wavelength channels is negligible; and (5) the contribution of reflected sunlight to the flux in the short-wavelength channels can be determined in good approximation, if the emissivity of the surface is known

    Information content on hydrometeors from millimeter and sub-millimeter wavelengths

    Get PDF
    This study examines the information content on hydrometeors that could be provided by a future HYperspectralMicrowave Sensor (HYMS) with frequencies ranging from 6.9 to 874 GHz (millimeter and sub-millimeter regions). Through optimal estimation theory the information content is expressed quantitatively in terms of degrees of freedom for signal (DFS). For that purpose the Atmospheric Radiative Transfer Simulator (ARTS) and its Jacobians are used with a set of 25 cloudy and precipitating profiles and their associated errors from the European Centre for Medium-range Weather Forecasting (ECMWF) global numerical weather prediction model. In agreement with previous studies it is shown that frequencies between 10 and 40 GHz are the most informative ones for liquid and rain water contents. Similarly, the absorption band at 118 GHz contains significant information on liquid precipitation. A set of new window channels (15.37-, 40.25-, 101-GHz) could provide additional information on the liquid phase. The most informative channels on cloud icewater are the window channels at 664 and 874GHz and thewater vapour absorption bands at 325 and 448 GHz. Regarding snow water contents, the channels having the largest DFS values are located inwindow regions (150-, 251-, 157-, 101-GHz). However it is necessary to consider 90 channels in order to represent 90% of the DFS. The added value of HYMS has been assessed against current Special Sensor Microwave Imager/Sounder (SSMI/S) onboard the Defense Meteorological Satellite Program (DMSP) and future (Microwave Imager/Ice Cloud Imager (MWI/ICI) onboard European Polar orbiting Satellite – Second Generation (EPS-SG)) microwave sensors. It appears that with a set of 276 channels the information content on hydrometeors would be significantly enhanced: the DFS increases by 1.7 against MWI/ICI and by 3 against SSMI/S. A number of tests have been performed to examine the robustness of the above results. The most informative channels on solid hydrometeors remain the same over land and over ocean surfaces. On the other hand, the database is not large enough to produce robust results over land surfaces for liquid hydrometeors. The sensitivity of the results to the microphysical properties of frozen hydrometeors has been investigated. It appears that a change in size distribution and scattering properties can move the large information content of the channels at 664 and 874 GHz from cloud ice to solid precipitation.Validerad; 2017; Nivå 2; 2017-01-31 (andbra)</p
    corecore